Network Analysis of Urban Traffic with Big Bus Data
نویسنده
چکیده
Urban traffic analysis is crucial for traffic forecasting systems, urban planning and, more recently, various mobile and network applications. In this paper, we analyse urban traffic with network and statistical methods. Our analysis is based on one big bus dataset containing 45 million bus arrival samples in Helsinki. We mainly address following questions: 1. How can we identify the areas that cause most of the traffic in the city? 2. Why there is a urban traffic? Is bus traffic a key cause of the urban traffic? 3. How can we improve the urban traffic systems? To answer these questions, first, the betweenness is used to identify the most import areas that cause most traffics. Second, we find that bus traffic is not an important cause of urban traffic using statistical methods. We differentieate the urban traffic and the bus traffic in a city. We use bus delay as an identification of the urban traffic, and the number of bus as an identification of the bus traffic. Third, we give our solutions on how to improve urban traffic by the traffic simulation on road networks. We show that adding more buses during the peak time and providing better bus schedule plan in the hot areas like railway station, metro station, shopping malls etc. will reduce the urban traffic. 1
منابع مشابه
Detecting Bot Networks Based On HTTP And TLS Traffic Analysis
Abstract— Bot networks are a serious threat to cyber security, whose destructive behavior affects network performance directly. Detecting of infected HTTP communications is a big challenge because infected HTTP connections are clearly merged with other types of HTTP traffic. Cybercriminals prefer to use the web as a communication environment to launch application layer attacks and secretly enga...
متن کاملUrban network risk assessment using Fuzzy-AHP and TOPSIS in GIS environment
Risk assessment of urban network using traffic indicators determines vulnerable links with high danger of traffic incidents. Thus Determination of an appropriate methodology remains a big challenge to achieve this objective. This paper proposed a methodology based on data fusion concept using Fuzzy-AHP and TOPSIS to achieve this aim. The proposed methodology tries to overcome two main problems,...
متن کاملOptimal Signal Control in Urban Road Networks with High Priority Congested Centers
Keeping the density of traffic flow and air pollution in an acceptable level and developing a good capacity for transit in the high priority areas of the city, is really a big deal in large and crowded cities. To address this problem, a new method of intersection signal optimization is presented in this paper. Based on network fundamental diagrams, an Internal–External Traffic Metering Strategy...
متن کاملDiscovering functional zones using bus smart card data and points of interest in Beijing
Cities comprise various functional zones, including residential, educational, commercial zones, etc. It is important for urban planners to identify different functional zones and understand their spatial structure within the city in order to make better urban plans. In this research, we used 77976010 bus smart card records of Beijing City in one week in April 2008 and converted them into two-di...
متن کاملImplementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.06769 شماره
صفحات -
تاریخ انتشار 2016